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The larch budmoth (LBM) population in the SwissAlps is well known for its periodic outbreaks and regular
oscillations over several centuries. The ecological mechanisms that drive these oscillations, however, have
not been unambiguously identified, although a number of hypotheses have been proposed. In this article,
we investigate several LBM resulting from these different ecological hypotheses. We first study a leaf
quality-moth population model and then two moth–parasitoid models. Existence and stability of equilibria
are investigated and sufficient conditions for which populations can persist are derived. We then provide
conclusions based on our analysis.

Keywords: larch budmoth; leaf quality; asymptotic stability; period-doubling bifurcation; uniform
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1. Introduction

Outbreaking forest insects provide fascinating examples of complex population dynamics. The
population of larch budmoth (LBM), Zeiraphera diniana, in the Swiss Alps is well known for its
periodic outbreaks and regular oscillations [2]. As in most outbreaking forest insects, identifying
causal mechanisms for LBM outbreaks has proven difficult. It is becoming clear, however, that
exogenous factors cannot generate consistent periodic cycles and that density-dependent effects
from biotic interactions are the most likely mechanisms [5].

A number of biotic mechanisms have been proposed. There is a lack of empirical support
for maternal effects, and although viral infections were observed to cause substantial mortality
during two intensively studied LBM outbreaks, subsequent outbreaks collapsed without being
accompanied by an increase in viral mortality [2]. Two non-mutually exclusive hypotheses for
the cause of LBM cycles are currently en vogue: (1) plant quality effects and (2) parasitoid–host
interactions. Plant quality and parasitism both have the necessary interaction effects to induce
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cycles [12]. For example, it usually takes several years for the leaf quality to recover after a serious
LBM outbreak, and field and laboratory studies show that poor plant quality has a strong effect
on LBM survival and reproduction [2], the consequence of which could result in regular cycles.
As for parasitoid effects, previous analyses for direct density-dependent effects suggested that
parasitoids had little role in creating population cycles because parasitism rates at peaks in LBM
population size were relatively low [2]. However, as Turchin et al. [12] pointed out, population
cycles are the result of second-order lags in density-dependent effects, and thus rejection of the
parasitoid hypothesis was inappropriate.

The goal of the present study is to provide mathematical analysis on the models proposed by
Turchin et al. [12]. We first investigate a leaf quality-LBM model and then two LBM-parasitoid
models. Because LBM has an annual life cycle with non-overlapping generations, the models
are systems of difference equations. We investigate the existence of simple stationary solu-
tions of the systems and their stabilities. Bifurcation analysis for each of the models will also
be performed. Criterion for population persistence will be derived. We will compare and con-
trast these analytical results. In the following section, we study a leaf quality-LBM model.
Section 3 investigates parasitoid-LBM models. The final section provides some biological
conclusions.

2. A plant quality-LBM model

Let Nt denote the LBM density at time t , t = 0, 1, . . ., where the moth population density is
measured in terms of the number of third instar larvae per kilogram of larch branches. Since
third instar larvae have approximately the same dimensions, the density is proportional to the
biomass. On the other hand, population densities are usually used in host–parasitoid interac-
tions. For these reasons, the LBM density is used in the leaf quality LBM model instead of
biomass.

The leaf quality (e.g., raw fibre and protein content) at time t is denoted by Qt . Good leaf
quality means low fibre and high protein content. The needle length is a good index of plant
quality since it is well correlated with raw fibre and protein content of needles [7,10]. Moreover,
data collected in [4] also indicated that needle length has a strong effect on larval survival and
pupal biomass, where pupal biomass is closely related to adult fecundity. Therefore, the index of
plant quality Q is measured in terms of average needle length L from field studies using a linear
conversion

Qt = Lt − 15

15
,

where the average minimum and maximum needle lengths of larch trees observed in the data
collected are 15 and 30 mm, respectively [12]. As a consequence, Qt is dimensionless and lies
between 0 and 1.

The dynamics of leaf quality in the absence of the moth population is modelled by a simple
linear recursive equation Qt+1 = (1 − α) + αQt , where 1 − α is the recovery rate of plant quality.
The plant quality decays to 0 at a rate α if the plant cannot renew itself. It is also assumed that
the effect of leaf quality is on budmoth’s intrinsic growth rate but not on its carrying capacity,
and the effect of plant quality on budmoth is modelled by a simple expression with saturation
Q/(δ + Q), where δ > 0 is the half-saturation constant for the plant quality. The uptake of the
moth population upon the plant is modelled using a Michaelis–Menton form N/(γ + N), where
γ > 0 is the half-saturation constant for the moth population uptake.

Under the above biological consideration, the interaction between plant quality and LBM
population can be described by the following system of two first-order non-linear difference
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equations:

Nt+1 = λNt

Qt

δ + Qt

e−βNt ,

Qt+1 = (1 − α)

(
1 − Nt

γ + Nt

)
+ αQt,

N0 ≥ 0, Q0 ≥ 0,

(1)

where parameters λ, δ, γ, β are positive and 0 < α < 1. Notice that since

Nt+1

Nt

= λ
Qt

δ + Qt

when the density-dependent mechanism is not incorporated, we see that the per capita growth rate
of the moth population is an increasing function of leaf quality Q. Parameter β is the intraspe-
cific competition coefficient for the moth population, which denotes how intensively individuals
compete for space and other resources within the moth population, and parameter λ is the intrin-
sic growth rate of the moth population. The population will either grow to infinity or decay
to zero exponentially depending on whether λ is greater than or less than one if there is no
density-dependent effect incorporated into the interaction.

We first rescale the system by letting xt = βNt and m = βγ . Then system (1) can be rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xt+1 = λxt

Qt

δ + Qt

e−xt ,

Qt+1 = (1 − α)

(
1 − xt

m + xt

)
+ αQt,

x0 ≥ 0, Q0 ≥ 0.

(2)

Observe that xt = 0 for t ≥ 1 if either x0 = 0 or Q0 = 0. In this case, limt→∞ Qt = 1. Also
xt > 0 and Qt > 0 for t ≥ 1 if x0 > 0 and Q0 > 0. Since xt+1 ≤ λxte−xt for t ≥ 0, we have

xt ≤ λe−1 for t ≥ 1.

Also Qt+1 ≤ (1 − α) + αQt for t ≥ 0 implies

lim sup
t→∞

Qt ≤ 1. (3)

We conclude that solutions of system (2) remain non-negative and are bounded, and therefore
model (1) is biologically sound.

Lemma 2.1 Solutions of system (2) remain non-negative for t > 0 and are bounded.

System (2) has a trivial stationary solution E0 = (0, 1) for all parameter values where LBM
population is extinct. The Jacobian matrix of system (2) evaluated at E0 has the form

J (E0) =

⎛
⎜⎜⎝

λ

δ + 1
0

−(1 − α)

m
α

⎞
⎟⎟⎠ .

Hence E0 is locally asymptotically stable if λ < δ + 1 and unstable if λ > δ + 1. It can be easily
shown that E0 is globally asymptotically stable if λ < δ + 1.
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Theorem 2.2 If λ < δ + 1, then equilibrium E0 = (0, 1) is globally asymptotically stable for
system (2).

Proof We claim that limt→∞ xt = 0 if λ < δ + 1. This is clear if λ < 1. If λ = 1, then xt+1 < xt

for t ≥ 0 implies limt→∞ xt = x̂ ≥ 0. If x̂ > 0, then from the first equation of (2) we would have
a contradiction, namely

1 < ex̂ = lim sup
t→∞

Qt

δ + Qt

< 1

by Lemma 2.1. Hence x̂ = 0. Suppose now 1 < λ < δ + 1. It follows from (3) that for any ε > 0,
we can find t0 > 0 such that Qt < 1 + ε for t ≥ t0. We choose ε > 0 so that

λ(1 + ε)

δ + 1 + ε
< 1.

Therefore,

xt+1 < λ
1 + ε

δ + 1 + ε
xt for t ≥ t0,

and thus limt→∞ xt = 0. This shows that limt→∞ xt = 0 if λ < δ + 1. Hence, for any ε > 0, there
exists t1 > 0 such that xt < ε for t ≥ t1. Consequently,

Qt+1 > (1 − α)

(
1 − ε

m + ε

)
+ αQt for t ≥ t1

implies

lim inf
t→∞ Qt ≥ (1 − α)(1 − ε/(m + ε))

1 − α
.

Letting ε → 0+, we have limt→∞ Qt = 1 by (3). Since E0 is locally asymptotically stable, E0 is
globally asymptotically stable. �

Since 1 is the maximum plant quality which the larch trees can maintain, λ/(δ + 1) can be
interpreted as the maximal growth rate of the moth population. The moth population can attain
this maximal growth rate only when the tree quality is at its optimal condition. Consequently, the
moth population becomes extinct if this maximal growth rate is less than 1.

Suppose now λ > δ + 1. Then E0 is unstable with stable manifold lying on the non-negative
Q-axis. The x, Q-components of a coexisting equilibrium where both populations can persist
must satisfy

Q = m

m + x

and

1 = λm

δm + δx + m
e−x. (4)

Note that Equation (4) has a positive solution if and only if λ > δ + 1, where the positive solution
is unique. Consequently, system (2) has a unique interior steady state Ē = (x̄, Q̄) if and only
if λ > δ + 1, where x̄ > 0 satisfies Equation (4) and Q̄ = m/(m + x̄). Moreover, we see from
Equation (4) that x̄ is an increasing function of both m and λ. However, x̄ is independent of α.
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On the other hand, since Q̄ is a decreasing function of x̄, Q̄ is a decreasing function of λ, but it
is also independent of α.

The Jacobian matrix of system (2) evaluated at Ē has the form

J̄ =
⎛
⎜⎝ 1 − x̄

δx̄

Q̄(δ + Q̄)−m(1 − α)

(m + x̄)2
α

⎞
⎟⎠

with tr J̄ = 1 + α − x̄ and

det J̄ = α(1 − x̄) + m(1 − α)δx̄

Q̄(δ + Q̄)(m + x̄)2
.

Applying the Jury conditions [1], we see that Ē is locally asymptotically stable if |tr J̄ | < 1 +
det J̄ < 2. Using Q̄ = m/(m + x̄), we obtain

1 + det J̄ = 1 + α(1 − x̄) + (1 − α)δx̄

δm + δx̄ + m
< 1 + α(1 − x̄) + (1 − α) < 2.

Moreover, |tr J̄ | < 1 + det J̄ is equivalent to

−
[

1 + α(1 − x̄) + (1 − α)δx̄

δm + δx̄ + m

]
< 1 + α − x̄ < 1 + α(1 − x̄) + (1 − α)δx̄

δm + δx̄ + m
.

The second inequality is always true since 0 < α < 1. Therefore, Ē is locally asymptotically
stable if the first inequality holds, which results in

x̄

(
1 − (1 − α)δx̄

(1 + α)(δm + δx̄ + m)

)
< 2. (5)

At those parameter values for which (5) becomes an equality, one of the eigenvalues of J̄ is
of −1 while the other eigenvalue has modulus less than 1. We conclude that a period-doubling
bifurcation may occur at those parameter values that equate inequality (5).

We next prove that both populations can persist if λ > δ + 1. System (2) is said to be uniformly
persistent if there exists a constant A > 0 such that lim inf t→∞ xt ≥ A and lim inf t→∞ Qt ≥ A

for all solutions (xt , Qt) of system (2) with x0 > 0 and Q0 > 0. We shall apply the techniques
introduced by Hofbauer and So [8].

Theorem 2.3 Let λ > δ + 1. Then system (2) has a unique interior steady state Ē = (x̄, Q̄) and
system (2) is uniformly persistent. Moreover, Ē is locally asymptotically stable if (5) holds.

Proof By the above discussion, we only need to prove the uniform persistence of system (2).
Let Y = {(x, 0) : x ≥ 0} ⋃{(0, Q) : Q ≥ 0}. Then R

2+\Y is forward invariant for system (2) and
(2) has a global attractor X. It is clear that the only invariant set in Y is {E0}. We proceed to verify
that {E0} is isolated in X and the stable set of E0 is contained in Y .

Since λ > δ + 1, there exists ε > 0 such that

λ(1 − ε)

δ + 1 − ε
e−ε > 1.

If {E0} is not isolated in X, then there exists a maximal invariant set M in B(E0, ε)
⋂

X

with M �= {E0}, where B(E0, ε) denotes the open ball centred at E0 of radius ε. Let
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x∗ = sup{x : (x, Q) ∈ M}. Note that 0 < x∗ ≤ ε and there exists Q∗, 1 − ε ≤ Q∗ ≤ 1 + ε such
that (x∗, Q∗) ∈ M . Let (x0, Q0) = (x∗, Q∗). It follows that

x1 ≥ x0
λ(1 − ε)

δ + 1 − ε
e−ε > x0,

and we obtain a contradiction since M is invariant. This shows that {E0} is isolated in X. To
verify that the stable set of E0 lies in Y , by contradiction, suppose there exists (x0, Q0) with
x0 > 0, Q0 > 0 such that limt→∞(xt , Qt) = E0. Then by a similar argument as above, we see
that

xt+1 >
λ(1 − ε)

δ + 1 − ε
e−εxt

for all except finitely many t , where

λ(1 − ε)

δ + 1 − ε
e−ε > 1.

Hence limt→∞ xt = ∞, and we obtain another contradiction. Therefore, the stable set of E0 lies
in Y and system (2) is uniformly persistent by [8, Theorem 4.1]. �

In order to study the system further, we numerically simulate system (2). We choose δ = 2,
m = 15, α = 0.5, and use λ as a bifurcation parameter. The choice of using λ as the bifurcation
parameter is motivated by the fact that fecundity of female adult LBM can vary significantly
depending on environment factors such as temperature, moisture, etc.

When λ is less than 3 = δ + 1, the moth population crashes as demonstrated analytically in
Theorem 2.2. When λ is between 3 and 10, then simulations revealed that there is only steady-state
dynamics. All solutions randomly chosen converge to the coexisting equilibrium. The bifurcation
diagrams presented here start with λ = 10 and end with λ = 60. It is clear that a period-doubling
bifurcation occurs when λ is somewhere between 22 and 25 and the moth population density
of the coexisting steady state in Figure 1(a) increases as we increase λ before hitting the first
bifurcation value. The opposite situation is observed for the plant quality in Figure 1(b).

These numerical results confirm our earlier analysis. It can be seen that the system clearly has a
positive period two solution when λ is just beyond 25, right after the period-doubling bifurcation.
Figure 1(a) and (b) are the bifurcation diagrams of system (2) for the moth population density and

Figure 1. Bifurcation diagrams for system (2) with λ as the bifurcation parameter. Other parameter values are δ = 2,
m = 15, and α = 0.5. The vertical axis represents moth population density (a) and leaf quality (b).
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plant quality, respectively. We see from these diagrams that period-doubling bifurcations occur
continuously and the system eventually becomes chaotic when λ is further increased. Notice that
similar dynamical behaviour of system (2) is observed when we change parameter values of δ, α,
and m. In particular, bifurcation diagrams similar to those of Figure 1 for the budmoth population
and leaf quality are obtained when we vary parameter values of δ, α, and m.

3. Moth–parasitoid models

It is well known that parasitoids play an important role in population dynamics of forest insects
[11]. For this reason, LBM parasitoids were intensively studied from the beginning of the system-
atic research on LBM oscillations. There are two main groups of parasitoids that are important
in affecting LBM population, eulophid species, and ichneumonids. Eulophids attack primarily
the third instar of LBM, while the ichneumonid attack mainly the fifth instar. In this section, we
present and investigate two models proposed by Turchin et al. [12].

3.1. A simple moth–parasitoid model

Similar to the previous section, we let Nt be the LBM population density at time t . The parasitoid
population density at time t is denoted by Pt , which is the number of adult parasitoids per
kilogramme of larch branches. Following that of Beddington et al. [3], the first model is based on
the Nicholson–Bailey model [9] with parasitoid interference functional response, aP/(1 + awP ),
as suggested by the preliminary data analysis on the moth–parasitoid interaction, where a is the
parasitoid searching rate and w is the parasitoid wasted time. The model is given below:

Nt+1 = λNte
−βNt e−aPt /(1+awPt ),

Pt+1 = bNt(1 − e−aPt /(1+awPt )),

N0 ≥ 0, P0 ≥ 0,

(6)

where parameters λ, β, w, b, and a are positive. Parameter b is the number of surviving parasitoid
produced by each parasitized moth, and parameters λ, β have the same biological meanings as
in the leaf quality-LBM model (1) presented in the previous section. Note that (6) is the model
proposed by Beddington et al. [3] when w = 0. It is assumed in [12] that 0 < w ≤ 1.

To simplify the system, we define new state variables xt = βNt , yt = aPt , and let c = ab/β.
Then system (6) becomes

xt+1 = λxte
−xt e−yt /(1+wyt ),

yt+1 = cxt (1 − e−yt /(1+wyt )),

x0 ≥ 0, y0 ≥ 0.

(7)

Observe that each of the non-negative coordinate axes is forward invariant for system (7).
Moreover, system (7) reduces to the classical Ricker equation

xt+1 = λxte
−xt (8)

when the parasitoid population is absent. It is also clear that solutions of system (7) satisfy{
xt ≤ λe−1,

yt ≤ λce−1,
(9)

for t ≥ 2. Therefore, model (6) is also biologically reasonable.
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Lemma 3.1 Solutions of system (7) remain non-negative for t > 0 and are bounded.

Since system (7) is a predator–prey model, steady state E0 = (0, 0) always exists where both
populations are extinct. The Jacobian matrix of system (7) evaluated at E0 has a simple form(

λ 0
0 0

)
. It follows that E0 is locally asymptotically stable if λ < 1 and unstable if λ > 1. Since

xt+1 ≤ λxt and yt+1 ≤ cxt for t ≥ 0, it can be easily shown that E0 is globally asymptotically
stable if λ < 1. The proof of the following theorem is omitted.

Theorem 3.2 Steady state E0 = (0, 0) is globally asymptotically stable for system (7) in R
2+ if

λ < 1.

Observe that λ is the inherent net growth rate of the moth population. It is the growth rate of the
population when population size is very small before intraspecific competition making any effect.
The population cannot survive if the inherent growth rate λ is less than 1. If λ > 1, then E0 is
unstable with stable manifold lying on the non-negative y-axis and there exists another boundary
steady state E1 = (ln λ, 0) where only the budmoth population can survive. The linearization of

system (7) with respect to E1 yields the Jacobian matrix

(
1 − ln λ − ln λ

0 c ln λ

)
. Therefore, E1 is

locally asymptotically stable if

ln λ < 2 (10)

and

c ln λ < 1. (11)

Note that inequality (10) is also the sufficient condition for local stability of ln λ as the positive
steady state for the corresponding Ricker equation (8). Equilibrium ln λ is globally asymptotically
stable in (0, ∞) for Equation (8) if (10) holds, it is unstable if inequality (10) is reversed, and a
period-doubling bifurcation occurs when ln λ = 2 [1].

It can be shown that E1 is globally asymptotically stable for system (7) whenever it is locally
asymptotically stable.

Theorem 3.3 Let λ > 1. Then system (7) has two boundary equilibria E0 = (0, 0) and E1 =
(ln λ, 0), where E0 is unstable and E1 is globally asymptotically stable in {(x, y) ∈ R

2+ : x > 0}
if inequalities (10) and (11) hold.

Proof We only need to prove global attractiveness of E1 in {(x, y) ∈ R
2+ : x > 0} when

Equations (10) and (11) are satisfied. Let (xt , yt ) be an arbitrary solution of system (7) with
x0 > 0. Since ln λ is globally asymptotically stable for Equation (8) in (0, ∞) by Equation (10) and
xt+1 ≤ λxte−xt holds for t > 0, lim supt→∞ xt ≤ ln λ. Therefore, for any ε > 0, we can find t0 > 0
such that xt < ln λ + ε for t ≥ t0. Since c ln λ < 1, we can choose ε > 0 such that c(ln λ + ε) < 1.
It follows from the second equation of (7) that yt+1 ≤ cxtyt < c(ln λ + ε)yt for t ≥ t0. This shows
that limt→∞ yt = 0, and as a result we have lim inf t→∞ xt ≥ ln λ. Consequently, E1 is globally
attracting in {(x, y) ∈ R

2+ : x > 0} and the proof is complete. �

Since each parasitized LBM can reproduce c number of parasitoids, c ln λ can be interpreted
as the reproductive number of the parasitoid when the moth population is stabilized at the ln λ

level. The parasitoid population cannot invade the moth population if this reproductive number is
less than one.
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We proceed to discuss the existence of coexisting equilibria. Let (x, y) be an interior steady
state of system (7). Then

x = ln λ − y

1 + wy
(12)

and

y = c

(
ln λ − y

1 + wy

)
(1 − e−y/1+wy). (13)

Letting z = y/(1 + wy), Equation (13) becomes

z

1 − wz
= c(ln λ − z)(1 − e−z). (14)

Observe that y > 0 if and only if 0 < z < 1/w, and x = ln λ − z > 0 if and only if z < ln λ. We
conclude that Equation (7) has a coexisting steady state (x∗, y∗) if and only if Equation (14) has
a solution z∗ such that

0 < z∗ < min

{
1

w
, ln λ

}
(15)

with y∗ = z∗/(1 − wz∗) and x∗ = ln λ − z∗. Consequently, we will look for a solution z∗ of
Equation (14) that satisfies inequality (15).

Let g(x) = x/(1 − wx) and h(x) = c(ln λ − x)(1 − e−x) for 0 ≤ x < min {1/w, ln λ}. Then
g(0) = 0, limx→1/w− g(x) = ∞, and g is increasing and concave up on (0, 1/w). Also
h(0) = h(ln λ) = 0, h′(x) = c(−1 + (1 + ln λ − x)e−x), h′′(x) = −c(2 + ln λ − x)e−x < 0 for
x ∈ [0, ln λ), and h′(x) = 0 has a unique solution in (0, ln λ), i.e., h(x) is a one-humped function
on (0, ln λ). Using these, it can be shown that system (7) has a unique interior steady state when
c ln λ > 1.

Theorem 3.4 Let λ > 1. Then system (7) has a unique interior equilibrium E∗ = (x∗, y∗) if and
only if c ln λ > 1. Moreover, system (7) is uniformly persistent if ln λ < 2 and c ln λ > 1.

Proof Suppose h′(0) = c ln λ < g′(0) = 1. We claim that Equation (14) has no solutions satis-
fying (15). For simplicity, we let r = ln λ. Since cr < 1, it is clear that crx < x/(1 − wx) for
0 < x < 1/w. Moreover, (r − x)(1 − e−x) < (r − x)x < rx holds for 0 < x < r . Therefore,
h(x) < crx < g(x) for 0 < x < min{1/w, r} and Equation (14) has no solutions satisfying (15).
Consequently, system (7) has no interior steady state if c ln λ < 1.

Suppose now h′(0) = cr > g′(0) = 1. It can be easily shown that Equation (14) has a unique
solution satisfying (15). Indeed, by our assumption of cr > 1, we see that y = h(x) lies above y =
g(x) for x > 0 and x small. Assume r ≤ 1/w. The case when r > 1/w can be argued similarly.
Notice h(r) = 0 and g(r) > 0 imply that h(x) = g(x) has at least one solution in (0, r). If there
were more than one solution in (0, r), let 0 < x1 < x2 < r be the first two solutions. Then we
must have h′(x1) ≤ g′(x1) and h′(x2) ≥ g′(x2). Since g′(x1) < g′(x2), we obtain h′(x1) < h′(x2)

by the above two inequalities and arrive at a contradiction because h is concave down on (0, r).
Therefore, (14) has a unique solution satisfying (15) and we conclude that system (7) has a unique
interior equilibrium E∗ = (x∗, y∗) if and only if c ln λ > 1.

To prove the uniform persistence of system (7), observe that since ln λ < 2, Equation (8) has
only simple dynamics, namely the positive steady state ln λ is globally asymptotically stable in
(0, ∞). The proof is similar to the proof of Theorem 2.3. We shall apply Theorem 4.1 of [8]. Let
Y be the set of non-negative x- and y-axes. It is clear that system (7) has a global attractor X

and the only invariant subset in Y is {E0, E1}. We need to verify that {Ei} is isolated in X and
the stable set of Ei lies in Y for i = 0, 1. It is straightforward to show that {E0} is isolated in
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X using λ > 1. Indeed, if {E0} is not isolated in X, then for any ε > 0 we can find a maximal
invariant set M0 in B(E0, ε)

⋂
X such that {E0} is a proper subset of M0. Since λ > 1, we can

choose ε > 0 such that ε + ε/(1 + wε) < ln λ and let xs = sup{x : (x, y) ∈ M0}. Then 0 < xs ≤
ε, and there exists ys , 0 < ys ≤ ε, such that (xs, ys) ∈ M0. Let (x0, y0) = (xs, ys). It follows that
x1 ≥ λx0e−εe−ε/(1+wε) > x0, which contradicts the choice of x0. Similarly, if {E1} is not isolated
in X, then for any ε > 0 given we can find a maximal invariant subset M1 in B(E1, ε)

⋂
X

with {E1} �= M1. Notice yu = sup{y : (x, y) ∈ M1} > 0. We choose ε so that c(ln λ − ε) > 1
and 1 − e−yu/(1+wyu) > ε. Notice there exists xu, ln λ − ε ≤ xu ≤ ln λ + ε, such that (xu, yu) ∈
M1. Let (x0, y0) = (xu, yu). Then y1 = cx0(1 − e−y0/(1+wy0)) > c(ln λ − ε)ε > ε ≥ y0, which is
impossible.

It remains to verify that the stable set of Ei lies in Y . Suppose there exist x0 > 0 and y0 > 0
such that limt→∞(xt , yt ) = E0. Then for any ε > 0 there exists t0 > 0 such that xt < ε and yt < ε

for t ≥ t0 We choose ε > 0 such that ε + ε/(1 + wε) < ln λ. It follows that xt+1 > xt for t ≥ t0,

and we would have limt→∞ xt > 0, which is impossible. The proof for the stable set of E1 lying
in Y is similar. Therefore, system (7) is uniformly persistent by Theorem 4.1 of [8]. �

Notice in the above theorem we only showed that both populations can persist when ln λ < 2
and c ln λ > 1. It is suspected that populations can coexist even when ln λ is greater than 2
but not too large. We use a numerical example to demonstrate that the parasitoid population
may become extinct when ln λ is large. The parameter values used in these simulations are
c = 10, w = 1, and λ ranges from 30 to 60. It can be seen from Figure 2(b) that the parasitoid
population crashes when λ is just less than 55. This is somewhat biologically unexpected. One
would expect that the large inherent net reproductive rate of the moth population will enhance the
growth of parasitoid since it relies on the moth population for its own reproduction. Figure 2(a)
is the corresponding bifurcation diagram for the moth population. From this we see that the
LBM population survives, whereas the parasitoid population goes extinct when λ is large. This
unexpected phenomenon is probably due to the frequent fluctuation of the LBM, which drives
the parasitoid to extinction.

Suppose now c ln λ > 1 so that E1 is unstable and system (7) has a unique coexisting equilib-
rium E∗ = (x∗, y∗). Note from (12) we have x∗ < ln λ, i.e., the LBM population density in the
coexisting steady state is always less than the LBM population density of the non-trivial boundary
steady state E1 = (ln λ, 0) for which the parasitoid population is extinct. The stability of E∗ can

Figure 2. Bifurcation diagrams for system (7) using λ as the bifurcation parameter with c = 10 and w = 1. (a) budmoth
population; (b) parasitoid population.
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be determined by the corresponding Jacobian matrix

J ∗ =

⎛
⎜⎜⎝

1 − x∗ −x∗

(1 + wy∗)2

y∗

x∗
cx∗ex∗

λ(1 + wy∗)2

⎞
⎟⎟⎠ .

It can be easily verified that trJ ∗ < 1 + det J ∗ for all w > 0. Indeed, tr J ∗ < 1 + det J ∗ is
equivalent to

cx∗e−y∗/(1+wy∗)

(1 + wy∗)2
< 1 + c(1 − e−y∗/(1+wy∗))

(1 + wy∗)2

and
cx∗e−y∗/(1+wy∗)

(1 + wy∗)2
= y∗

(ey∗/(1+wy∗) − 1)(1 + wy∗)2
< 1

if and only if

1 < (1 + wy∗)
(

1 + y∗

2(1 + wy∗)
+ y∗2

3(1 + wy∗)2
+ · · ·

)
,

which is clearly valid for all w > 0. Hence, trJ ∗ < 1 + detJ ∗ always holds for all 0 < w ≤ 1.
Therefore, a +1 bifurcation is impossible to occur when E∗ loses its stability. Furthermore, a
direct computation shows that det J ∗ < 1 is equivalent to

y∗ + (1 − x∗)e−y∗/(1+wy∗)

(1 + wy∗)2
< 1,

where
y∗ + (1 − x∗)e−y∗/(1+wy∗)

(1 + wy∗)2
<

y∗ + 1

(1 + wy∗)2

and
y∗ + 1

(1 + wy∗)2
< 1

if and only if
1

2 + wy∗ < w.

We conclude that detJ ∗ < 1 if w ≥ 1/2, i.e., a Hopf bifurcation cannot occur if w ≥ 1/2. As a
consequence, only a period-doubling bifurcation is possible when E∗ loses its stability if w ≥ 1/2.

Recall that in Figure 2 we use w = 1 for the simulations. Although we are only able to prove
analytically that only a period-doubling bifurcation can occur when E∗ loses its stability for
w ≥ 1/2, bifurcation analysis seems to suggest that this is the case for all 0 < w ≤ 1. Moreover,
it is showed that a +1 bifurcation cannot occur for all 0 < w ≤ 1 when E∗ loses its stability.
Although the figures are not presented here, similar bifurcation diagrams as those in Figure 2 are
obtained if we vary parameters w and c.

3.2. A moth–parasitoid model with host self-regulation

In this subsection we investigate a moth–parasitoid model that is also based on the Nicholson–
Bailey model. Similar to system (6), Nt and Pt are denoted as the LBM and parasitoid densities at
time t , respectively. In addition to the parasitoid mutual interference incorporated in system (6),
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the model also takes into account of the host self-regulation and saturation. The probability of an
individual host being parasitized per unit time is now given by e−aP/(1+ahN+awP ), where h > 0 is
the handling time of the parasitoid and parameters a and w have the same biological meanings as
in the previous model (6). The new model takes the following form:

Nt+1 = λNte
−βNt e−aPt /(1+ahNt+awPt ),

Pt+1 = bNt(1 − e−aPt /(1+ahNt+awPt )),

N0 ≥ 0, P0 ≥ 0.

(16)

To simplify the system, we let xt = βNt, yt = aPt , c = ab/β, and s = ah/β, then system (16)
becomes

xt+1 = λxte
−xt e−yt /(1+sxt+wyt ),

yt+1 = cxt (1 − e−yt /(1+sxt+wyt )),

x0 ≥ 0, y0 ≥ 0.

(17)

It is clear that solutions of system (17) also satisfy inequalities (9), remain non-negative, and are
bounded.

Lemma 3.5 Solutions of system (17) remain non-negative and are bounded.

Similar to the previous moth–parasitoid model (7), system (17) always has the trivial steady
state E0 = (0, 0) where both populations are extinct. Notice E0 is locally asymptotically stable
if λ < 1, and it can be easily shown that it is globally asymptotically stable whenever λ < 1.
Therefore, global extinction of the two populations occurs when the inherent net growth rate, λ,
of the moth population is less than one. The proof of the following theorem is straightforward
and is omitted.

Lemma 3.6 Steady state E0 = (0, 0) is globally asymptotically stable for system (17) if λ < 1.

Assume λ > 1. Then E0 is a saddle point, with the stable manifold lying on the non-negative
y-axis, and there exists another boundary steady state E1 = (ln λ, 0) where only the LBM
population can persist. The Jacobian matrix of (17) evaluated at E1 has the form⎛

⎜⎜⎝
1 − ln λ

− ln λ

1 + s ln λ

0
c ln λ

1 + s ln λ

⎞
⎟⎟⎠ .

It follows that E1 is locally asymptotically stable if Equation (10) holds and

c ln λ

1 + s ln λ
< 1. (18)

Since system (17) also reduces to the scalar Ricker Equation (8) when the parasitoid population
is absent, it can be shown that E1 is globally asymptotically stable whenever it is locally asymp-
totically stable. The proof of the following lemma is similar to Theorem 3.3 and is therefore
omitted.

Lemma 3.7 Let λ > 1. Then system (17) has another steady state E1 = (ln λ, 0) and E1 is
globally asymptotically stable in {(x, y) ∈ R

2+ : x > 0} if ln λ < 2 and c ln λ/(1 + s ln λ) < 1.
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Let (x, y) denote an interior steady state of system (17) and set z = y/(1 + sx + wy). Then

x = ln λ − z, y = (1 + sx)z

1 − wz

and z must satisfy

(1 − sz + s ln λ)z

1 − wz
= c(ln λ − z)(1 − e−z). (19)

It follows that system (17) has an interior steady state (x∗, y∗) if (19) has a solution z∗ satisfying

0 < z∗ < min

{
1

w
, ln λ

}
, (20)

where x∗ = ln λ − z∗ and y∗ = ((1 + sx∗)z∗)/(1 − wz∗). Let h(x) = c(ln λ − x)(1 − e−x) as
defined in Section 3.1 and g̃(x) = ((1 − sx + s ln λ)x)/(1 − wx) for 0 ≤ x < min{1/w, ln λ}.
We first consider the case when 1/w ≤ ln λ. Recall that h is a one-hump function with h(0) =
h(ln λ) = 0 and h′(0) = c ln λ. A simple calculation yields

g̃′(x) = 1 + s ln λ − 2sx + swx2

(1 − wx)2

and

g̃′′(x) = −2s + 2w + 2ws ln λ

(1 − wx)3
.

Since 1/w ≤ ln λ, g̃′′(x) > 0 for all 0 ≤ x < min{1/w, ln λ}. Let d(x) = 1 + s ln λ − 2sx +
swx2. Then d(0) = 1 + s ln λ, d ′(x) = 2s(wx − 1) < 0 for 0 < x < 1/w, and d(1/w) = 1 +
s(ln λ − 1/w) > 0. Thus y = g̃(x) is monotonically increasing and concave up on (0, 1/w) with
g̃′(0) = 1 + s ln λ. Similar to the proof of Theorem 3.4, it can be shown that when 1/w ≤ ln λ,
Equation (19) has a solution satisfying inequality (20) if and only if 1 + s ln λ = g̃′(0) < h′(0) =
c ln λ, i.e., when 1/w ≤ ln λ, system (17) has a unique interior steady state if and only if
c ln λ/(1 + s ln λ) > 1.

We next consider the case when 1/w > ln λ. Set d(x) = 0, we have

x± = s ± √
s2 − (1 + s ln λ)sw

sw
.

If s < w/(1 − w ln λ), then x± are not real numbers and so that g̃′(x) > 0 and moreover g̃′′(x) > 0
for 0 ≤ x < ln λ. Therefore, system (17) has an interior steady state if and only if (18) is reversed.
If s = w/(1 − w ln λ), then g̃ is a linear increasing function and the same conclusion can be
arrived at. If s > w/(1 − w ln λ), then x± are positive real numbers. However, it can be verified
that x+ > ln λ and so that g̃′(x) = 0 has at most one solution and g̃ is concave down in (0, ln λ).
It is then clear that y = g̃(x) lies above y = h(x) on (0, ln λ] when Equation (18) holds and the
two curves intersect only once if (18) is reversed. Therefore, we have the following result, where
the persistence of the two populations can be proved similarly as in Theorem 3.4.
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Figure 3. This figure provides bifurcation diagrams for system (17) when w = 1, c = 10, and s = 0.5, (a) and (b) moth
and parasitoid population densities, respectively.

Theorem 3.8 Let λ > 1. Then system (17) has a unique interior steady state if and only if
c ln λ/(1 + s ln λ) > 1. Moreover, system (17) is uniformly persistent if ln λ < 2 and c ln λ/(1 +
s ln λ) > 1.

We now use simulations to study system (17). Fix w = 1, c = 10 as in Figure 2, and s = 0.5,
and let λ be a bifurcation parameter with values ranging from 10 to 60. Since

c ln(20)

1 + s ln(20)
= 11.9932 > 1,

it follows from our analysis that system (17) has a unique interior state when λ = 10. Although
we do not investigate its local stability analytically as we did for system (7), bifurcation diagrams
reveal that the unique interior steady state is globally asymptotically stable in the interior of
the positive cone when λ is less than 16.5; See Figure 3(a) for moth population densities and
Figure 3(b) for parasitoid densities. From these diagrams, it appears that the interior steady state
also loses its stability via a period-doubling bifurcation and the parasitoid population also goes
extinct when λ is large. Similar bifurcation diagrams are obtained when we change parameter
values of w, c, and s.

4. Conclusions

In this article, we studied one LBM-leaf quality model and two LBM-parasitoid models, proposed
by Turchin et al. [12]. From the mathematical analysis and bifurcation diagrams presented in
Sections 2 and 3, it seems to suggest that the dynamics of leaf quality LBM and LBM parasitoid
systems are topologically conjugate [6] to each other under some restrictions on the parameter
values. In other words, although the systems are derived from very different biological phenomena
and assumptions, their dynamics seem to be topologically equivalent to each other. Therefore,
it is very difficult to arrive at conclusions based on mathematical analysis performed on these
models as whether leaf quality or parasitoid is the main factor that is responsible for the LBM
population cycling. However, each of these models does confirm our biological intuition. Namely,
there exist population thresholds in terms of model parameters above which populations can
persist and below which populations go extinct. Furthermore, the statistical study provided by
Turchin et al. [12] does suggest that the parasitism is probably the more important factor for LBM
cycling.
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